Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.821
Filtrar
1.
Anal Bioanal Chem ; 416(11): 2871-2882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581531

RESUMO

Antarctic seaweeds are vital components of polar marine ecosystems, playing a crucial role in nutrient cycling and supporting diverse life forms. The sulfur content in these organisms is particularly interesting due to its implication in biogeochemical processes and potential impacts on local and global environmental systems. In this study, we present a comprehensive characterization of seaweed collected in the Antarctic in terms of their total sulfur content and its distribution among different classes of species, including thiols, using various methods and high-sensitivity techniques. The data presented in this paper are unprecedented in the scientific literature. These methods allowed for the determination of total sulfur content and the distribution of sulfur compounds in different fractions, such as water-soluble and proteins, as well as the speciation of sulfur compounds in these fractions, providing valuable insights into the chemical composition of these unique marine organisms. Our results revealed that the total sulfur concentration in Antarctic seaweeds varied widely across different species, ranging from 5.5 to 56 g kg-1 dry weight. Furthermore, our investigation into the sulfur speciation revealed the presence of various sulfur compounds, including sulfate, and some thiols, which were quantified in all ten seaweed species evaluated. The concentration of these individual sulfur species also displayed considerable variability among the studied seaweeds. This study provides the first in-depth examination of total sulfur content and sulfur speciation in brown and red Antarctic seaweeds.


Assuntos
Alga Marinha , Alga Marinha/química , Regiões Antárticas , Peso Molecular , Ecossistema , Enxofre/metabolismo , Compostos de Enxofre/metabolismo , Verduras , Compostos de Sulfidrila/metabolismo
2.
Sci Rep ; 14(1): 6214, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486008

RESUMO

Fucoidan has attracted considerable attention from scientists and pharmaceutical companies due to its antioxidant, anticoagulant, anti-inflammatory, anti-tumor, and health-enhancing properties. However, the extraction of fucoidan from seaweeds often involves the use of harsh chemicals, which necessitates the search for alternative solvents. Additionally, the high viscosity and low cell permeability of high molecular weight (Mw) fucoidan can limit its effectiveness in drug action, while lower Mw fractions exhibit increased biological activity and are also utilized as dietary supplements. The study aimed to (1) extract fucoidan from the seaweed Fucus vesiculosus (FV) using an environmentally friendly solvent and compare it with the most commonly used extraction solvent, hydrochloric acid, and (2) assess the impact of ultrasound-assisted depolymerization on reducing the molecular weight of the fucoidan extracts and examine the cytotoxic effect of different molecular weight fractions. The findings indicated that the green depolymerization solvent, in conjunction with a brief ultrasound treatment, effectively reduced the molecular weight. Moreover, a significant decrease in cell viability was observed in selected samples, indicating potential anticancer properties. As a result, ultrasound was determined to be an effective method for depolymerizing crude fucoidan from Fucus Vesiculosus seaweed.


Assuntos
Fucus , Polissacarídeos , Alga Marinha , Alga Marinha/química , Fucus/química , Anticoagulantes , Solventes
3.
Int J Biol Macromol ; 263(Pt 2): 130364, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401579

RESUMO

It is believed that polysaccharides will become a focal point for future production of food, pharmaceuticals, and materials due to their ubiquitous and renewable nature, as well as their exceptional properties that have been extensively validated in the fields of nutrition, healthcare, and materials. Sulfated polysaccharides derived from seaweed sources have attracted considerable attention owing to their distinctive structures and properties. The genus Codium, represented by the species C. fragile, holds significance as a vital economic green seaweed and serves as a traditional Chinese medicinal herb. To date, the cell walls of the genus Codium have been found to contain at least four types of sulfated polysaccharides, specifically pyruvylated ß-d-galactan sulfates, sulfated arabinogalactans, sulfated ß-l-arabinans, and sulfated ß-d-mannans. These sulfated polysaccharides exhibit diverse biofunctions, including anticoagulant, immune-enhancing, anticancer, antioxidant activities, and drug-carrying capacity. This review explores the structural and biofunctional diversity of sulfated polysaccharides derived from the genus Codium. Additionally, in addressing the impending challenges within the industrialization of these polysaccharides, encompassing concerns regarding scale-up production and quality control, we outline potential strategies to address these challenges from the perspectives of raw materials, extraction processes, purification technologies, and methods for quality control.


Assuntos
Clorófitas , Alga Marinha , Sulfatos/química , Clorófitas/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Alga Marinha/química , Mananas , Anticoagulantes/química
4.
Food Res Int ; 178: 113990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309924

RESUMO

This study aimed to assess the nutritional quality and digestibility of proteins in two red seaweed species, Gelidium corneum and Gracilaropsis longissima, through the application of in vitro gastrointestinal digestions, and evaluate the impact of two consecutive processing steps, extrusion and compression moulding, to produce food snacks. The protein content in both seaweeds was approximately 16 %, being primarily located within the cell walls. Both species exhibited similar amino acid profiles, with aspartic and glutamic acid being most abundant. However, processing impacted their amino acid profiles, leading to a significant decrease in labile amino acids like lysine. Nevertheless, essential amino acids constituted 35-36 % of the total in the native seaweeds and their processed products. Although the protein digestibility in both seaweed species was relatively low (<60 %), processing, particularly extrusion, enhanced it by approximately 10 %. Interestingly, the effect of the different processing steps on the digestibility varied between the two species. This difference was mainly attributed to compositional and structural differences. G. corneum exhibited increased digestibility with each processing step, while G. longissima reached maximum digestibility after extrusion. Notably, changes in the amino acid profiles of the processed products affected adversely the protein nutritional quality, with lysine becoming the limiting amino acid. These findings provide the basis for developing strategies to enhance protein quality in these seaweed species, thereby facilitating high-quality food production with potential applications in the food industry.


Assuntos
60578 , Lisina , Rodófitas , Alga Marinha , Digestão , Proteínas , Aminoácidos/química , Parede Celular/metabolismo , Alga Marinha/química
5.
J Trace Elem Med Biol ; 83: 127396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38242005

RESUMO

BACKGROUND: Despite the recognized importance, the determination of halogens in Antarctic seaweeds remains understudied. Limited research exists due to challenges associated with sample preparation, and reliable analytical techniques for this type of analysis. Therefore, further investigations are necessary to bridge this knowledge gap and gain a comprehensive understanding of halogen metabolism in Antarctic seaweeds. METHODS: In this study, seaweeds from the coast of the Antarctic continent were characterized concerning the total content of halogens and their species. For this purpose, different sample preparation methods, based on extraction and combustion, combining highly selective and sensitive chromatographic and spectrometric multi-technique approaches were used. RESULTS: By using optimized methods, it was possible to determine total halogens content, the distribution of bromine and iodine in different classes of species (lipids, water-soluble, proteins, carbohydrates, and residue), as well as the identification of iodinated amino acids (MIT and DIT) in ten brown and red seaweeds. Bromate and iodate were not detected in the samples, which presented only bromide and iodide species in their composition. Additionally, unknown bromine and iodine species were observed in different extracts evaluated. Furthermore, 25 halogenated polyphenols were identified in seaweeds, of which only four were already reported in the literature. CONCLUSION: The results obtained in this study comprise unprecedented data in the literature on species of halogens present in seaweeds from the Antarctic environment.


Assuntos
Iodo , Alga Marinha , Halogênios , Bromo/análise , Regiões Antárticas , Iodo/análise , Alga Marinha/química
6.
Int J Biol Macromol ; 259(Pt 2): 129326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218264

RESUMO

The aims of this study are to determine the structure of a fucoidan from brown seaweed Turbinaria decurrens, to investigate its anticancer activity and structure-activity relationship. SEC-MALLS, IR, ESI-MS and NMR spectra analysis indicated that dominant structure of the fucoidan, with a Mw 122.6 KDa, has a backbone of (1 â†’ 3)- and (1 â†’ 4)-α-L-Fucp residues, branched at C-4, sulfate groups are attached at C-2, C-3 and C-4; branches are (1 â†’ 4)-ß-D-Galp residues and sulfated at C-2. The fucoidan was hydrolyzed by HCl aqueous solution to obtain hydrolyzed fucoidans. It is assumed that native and hydrolyzed fucoidans have a rod-like conformation in solution with cross-sectional radius of gyration (Rgc) ranged from 0.53 to 1.52 nm as estimated from SAXS measurements. The fucoidans show great anticancer activity against HT29 human colon cancer cell line with IC50 ranging from 5.41 ± 0.36 to 73.52 ± 2.54 µg/mL. Anticancer activity of the fucoidan could be significantly improved by lowering molecular weight, furthermore, fucoidan required small molecular weight, small molecular weight distribution and rod-like structure with a short branch length for high anticancer activity.


Assuntos
Feófitas , Polissacarídeos , Alga Marinha , Humanos , Espalhamento a Baixo Ângulo , Estudos Transversais , Difração de Raios X , Polissacarídeos/farmacologia , Polissacarídeos/química , Alga Marinha/química , Relação Estrutura-Atividade
7.
Microb Pathog ; 188: 106546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278457

RESUMO

Nanomaterials derived from seaweed have developed as an alternative option for fighting infections caused by biofilm-forming microbial pathogens. This research aimed to discover potential seaweed-derived nanomaterials with antimicrobial and antibiofilm action against bacterial and fungal pathogens. Among seven algal species, the extract from Eisenia bicyclis inhibited biofilms of Klebsiella pneumoniae, Staphylococcus aureus, and Listeria monocytogenes most effectively at sub-MIC levels. As a result, in the present study, E. bicyclis was chosen as a prospective seaweed for producing E. bicyclis-gold nanoparticles (EB-AuNPs). Furthermore, the mass spectra of E. bicyclis reveal the presence of a number of potentially beneficial chemicals. The polyhedral shape of the synthesized EB-AuNP with a size value of 154.74 ± 33.46 nm was extensively described. The lowest inhibitory concentration of EB-AuNPs against bacterial pathogens (e.g., L.monocytogenes, S. aureus, Pseudomonas aeruginosa, and K. pneumoniae) and fungal pathogens (Candida albicans) ranges from 512 to >2048 µg/mL. Sub-MIC of EB-AuNPs reduces biofilm formation in P. aeruginosa, K. pneumoniae, L. monocytogenes, and S. aureus by 57.22 %, 58.60 %, 33.80 %, and 91.13 %, respectively. EB-AuNPs eliminate the mature biofilm of K. pneumoniae at > MIC, MIC, and sub-MIC concentrations. Furthermore, EB-AuNPs at the sub-MIC level suppress key virulence factors generated by P. aeruginosa, including motility, protease activity, pyoverdine, and pyocyanin, whereas it also suppresses the production of staphyloxanthin virulence factor from S. aureus. The current research reveals that seaweed extracts and a biocompatible seaweed-AuNP have substantial antibacterial, antibiofilm, and antivirulence actions against bacterial and fungal pathogens.


Assuntos
Anti-Infecciosos , 60578 , Kelp , Nanopartículas Metálicas , Alga Marinha , Ouro/farmacologia , Ouro/química , Staphylococcus aureus , Estudos Prospectivos , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Biofilmes , Alga Marinha/química , Fatores de Virulência , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
8.
Bioorg Chem ; 143: 107099, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190798

RESUMO

INTRODUCTION: Antihypertensive drugs that are chemically synthesized usually tend to initiate different health complications. The quest for bioactive molecules to create novel medicines has focused on Marine resources like seaweeds. These molecules can furnish a positive probability for patients to gain benefits from these natural substances. METHODS: This study aims to identify phytoconstituents present in brown seaweed-Padina boergesenii. Five different solvents were used to prepare extracts and their antioxidant activity as well as antihypertensive activity was evaluated. Phytoconstituents were identified using LC-MS/MS, and subjected to molecular interaction against ACE enzyme. RESULTS: The 70% ethanolic extract exhibited the highest total phenolic content (TPC), significant radical scavenging activity and concentration dependent Angiotensin Converting Enzyme (ACE) inhibition activity. LC-MS/MS analysis confirmed the presence of bioactive compounds from which 7,8 dihydroxycoumarin had the highest affinity against ACE enzyme in molecular docking study. CONCLUSION: These findings advocate that Padina boergesenii can be a potential source for developing novel antihypertensive therapeutic drug(s) and could pave the way for evolving effective and safe remedies from natural resources.


Assuntos
Anti-Hipertensivos , Alga Marinha , Humanos , Anti-Hipertensivos/farmacologia , Simulação de Acoplamento Molecular , Cromatografia Líquida , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Antioxidantes/farmacologia , Alga Marinha/química
9.
Int J Biol Macromol ; 260(Pt 1): 129458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232871

RESUMO

Kappa-carrageenan is one of the most traded marine-derived hydrocolloids used in the food-and-beverage, pharmaceuticals, and personal care/cosmetics industries. K. alvarezii (previously known as Kappaphycus alvarezii) is arguably the most important natural producer based on annual production size and near-homogeneity of the product (i.e., primarily being the kappa-type). The anticipated expansion of the kappa-carrageenan market in the coming years could easily generate >100,000 MT of residual K. alvarezii biomass per year, which, if left untreated, can severely affect the environment and economy of the surrounding area. Among several possible valorization routes, turning the biomass residue into anti-photoaging cosmetic ingredients could potentially be the most sustainable one. Not only optimizing the profit (thus better ensuring economic sustainability) relative to the biofuels- and animal feed-routes, the action could also promote environmental sustainability. It could reduce the dependency of the current cosmetic industry on both petrochemicals and terrestrial plant-derived bioactive compounds. Note how, in contrast to terrestrial agriculture, industrial cultivation of seaweeds does not require arable land, freshwater, fertilizers, and pesticides. The valorization mode could also facilitate the sequestration of more greenhouse gas CO2 as daily-used chemicals, since the aerial productivity of seaweeds is much higher than that of terrestrial plants. This review first summarizes any scientific evidence that K. alvarezii extracts possess anti-photoaging properties. Next, realizing that conventional extraction methods may prevent the use of such extracts in cosmetic formulations, this review discusses the feasibility of obtaining various K. alvarezii compounds using green methods. Lastly, a perspective on several potential challenges to the proposed valorization scheme, as well as the potential solutions, is offered.


Assuntos
60578 , Rodófitas , Alga Marinha , Animais , Carragenina/química , Rodófitas/química , Alga Marinha/química
10.
Plant Foods Hum Nutr ; 79(1): 137-142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38206480

RESUMO

The present investigation finds that Chondracanthus chamissoi seaweed abounding in Peruvian coasts is characterized by its nutritional composition, total polyphenols, antioxidant capacity, and functional properties such as water-holding capacity (WHC), oil-holding capacity (OHC), and swelling capacity (SC). Boiling and steaming were applied before dehydration to evaluate the effect of these thermal treatments, keeping a control sample. The results indicated that the control dried seaweed sample presented 20.2 ± 0.16 g/100 g dw of proteins, 20.0 ± 0.61 g/100 g dw of ash, and 56.6 ± 0.08 g/100 g dw of total dietary fiber. In addition, the control sample presented 1.6 ± 0.07 mg GAE/g of total polyphenol content and 2.4 ± 0.30 mM Trolox mg/g of antioxidant capacity. In boiling samples, the apparent nutrient retention factors for proteins, fat, and dietary fiber are 96, 47 and 74%, respectively. In the steaming sample, the values were 102, 29, and 92%. The boiling before dehydration causes a significant decrease (p < 0.05) in total polyphenols and increases carbohydrates. Steaming before dehydration, a significant (p < 0.05) increase occurs in carbohydrates without significantly altering the concentration of total polyphenols. Regarding the functional properties, C. chamissoi presents 17.6 ± 0.15 g/g of WHC, 2.4 ± 0.78 g/g of OHC, and 9.8 ± 0.75 mL/g of SC. Boiling produces an increase in WHC and OHC; steaming does not affect the properties of the control sample.C. chamissoi seaweed collected from the coasts of Perú is an excellent alternative for use as food and ingredients in processed foods for human consumption.


Assuntos
Antioxidantes , Alga Marinha , Humanos , Antioxidantes/análise , Alga Marinha/química , Peru , Desidratação , Polifenóis/análise , Verduras , Carboidratos , Fibras na Dieta/análise
11.
Mar Drugs ; 22(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276650

RESUMO

Ascophyllum nodosum is a brown seaweed common in Arctic tidal waters. We have collected A. nodosum samples from the Barents Sea (BS), Irminger Sea (IS), and Norwegian Sea (NS) in different reproductive stages and have evaluated their biochemical composition, radical scavenging potential, and health risks. The total content of dominating carbohydrates (fucoidan, mannitol, alginate, and laminaran) ranged from 347 mg/g DW in NS to 528 mg/g DW in BS. The proportion of two main structural monosaccharides of fucoidan (fucose and xylose) differed significantly between the seas and reproductive phase, reaching a maximum at the fertile phase in the BS sample. Polyphenols and flavonoids totals were highest in NS A. nodosum samples and increased on average in the following order: BS < IS < NS. A positive correlation of free radical scavenging activity for seaweed extracts with polyphenols content was observed. The concentration of elements in A. nodosum from the Arctic seas region was in the following order: Ca > Mg > Sr > Fe > Al > Zn > As total > Rb > Mn > Ba > Cu > Co. Seaweeds from BS had the lowest metal pollution index (MPI) of 38.4. A. nodosum from IS had the highest MPI of 83. According to the calculated target hazard quotient (THQ) and hazard index (HI) values, Arctic A. nodosum samples pose no carcinogenic risk to adult and child health and are safe for regular consumption. Our results suggest that the Arctic A. nodosum has a remarkable potential for food and pharmaceutical industries as an underestimated source of polysaccharides, polyphenols, and flavonoids.


Assuntos
Ascophyllum , Alga Marinha , Criança , Humanos , Ascophyllum/química , Alginatos , Carboidratos , Polifenóis , Alga Marinha/química , Flavonoides
12.
Nat Prod Res ; 38(4): 555-562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36803099

RESUMO

In this article, chemical structure and conformation in an aqueous solution of a new sulfated polysaccharide, PCL, extracted from green seaweed Chaetomorpha linum were elucidated by SEC-MALL, IR, NMR and SAXS. The results indicated that the obtained polysaccharide is a sulfated arabinogalactan with a molecular weight of 223 kDa, and is mainly composed of →3,6)-α-D-Galp4S→ and →2)-α-L-Araf→ connecting together through 1→3 glycoside linkages. It has a broken rod-like conformation in solution with Rgc estimated as 0.43 nm from SAXS measurements. The polysaccharide exhibited a notable anticoagulant activity measured by the assays of activated partial thromboplastintime, thrombintime and prothrombine time as well as a significant cytotoxic activity against hepatocellular, human breast cancer, and cervical cancer cell lines.


Assuntos
Antineoplásicos , Clorófitas , Linho , Alga Marinha , Humanos , Anticoagulantes/farmacologia , Anticoagulantes/química , Sulfatos , Espalhamento a Baixo Ângulo , Difração de Raios X , Alga Marinha/química , Polissacarídeos/farmacologia , Polissacarídeos/química
13.
Exp Parasitol ; 256: 108651, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944660

RESUMO

Infectious diseases such as malaria, dengue, and yellow fever are predominantly transmitted by insect vectors like Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus in tropical regions like India and Africa. In this study, we assessed the larvicidal activity of commonly found seaweeds, including Padina gymnospora, P. pavonica, Gracilaria crassa, Amphiroa fragilissima, and Spatoglossum marginatum, against these mosquito vectors. Our findings indicate that extracts from P. gymnospora Ethyl Acetate (PgEA), P. pavonica Hexane (PpH), and A. fragilissima Ethyl Acetate (AfEA) displayed the highest larval mortality rates for A. stephensi, with LC50 values of 10.51, 12.43, and 6.43 µg/mL, respectively. Additionally, the PgEA extract from P. gymnospora exhibited the highest mortality rate for A. aegypti, with an LC50 of 27.0 µg/mL, while the PgH extract from the same seaweed showed the highest mortality rate for C. quinquefasciatus, with an LC50 of 9.26 µg/mL. Phytochemical analysis of the seaweed extracts revealed the presence of 71 compounds in the solvent extracts. Fourier-transform infrared spectra of the selected seaweeds indicated the presence of functional groups such as alkanes, alcohols, and phenols. Gas chromatography-mass spectrometry analysis of the seaweeds identified major compounds, including hexadecanoic acid in PgEA, tetradecene (e)- in PpEA, octadecanoic acid in GcEA, and 7-hexadecene, (z)-, and trans-7-pentadecene in SmEA.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Alga Marinha , Animais , Inseticidas/análise , Larva , Alga Marinha/química , Rodófitas/química
14.
Int J Biol Macromol ; 254(Pt 3): 127870, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967607

RESUMO

Brown seaweeds contain a variety of saccharides which have potential industrial uses. The most abundant polysaccharide in brown seaweed is typically alginate, consisting of mannuronic (M) and guluronic acid (G). The ratio of these residues fundamentally determines the physicochemical properties of alginate. In the present study, gas chromatography/mass spectrometry (GC/MS) was used to give a detailed breakdown of the monosaccharide species in North Atlantic brown seaweeds. The anthrone method was used for determination of crystalline cellulose. The experimental data was used to calibrate multivariate prediction models for estimation of total carbohydrates, crystalline cellulose, total alginate and alginate M/G ratio directly in dried, brown seaweed using three types of infrared spectroscopy, using relative error (RE) as a measure of predictive accuracy. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) performed well for the estimation of total alginate (RE = 0.12, R2 = 0.82), and attenuated total reflectance (ATR) showed good prediction of M/G ratio (RE = 0.14, R2 = 0.86). Both DRIFTS, ATR and near infrared (NIR) were unable to predict crystalline cellulose and only DRIFTS performed better in determining total carbohydrates. Multivariate spectral analysis is a promising method for easy and rapid characterization of alginate and M/G ratio in seaweed.


Assuntos
Alga Marinha , Alga Marinha/química , Espectrofotometria Infravermelho , Carboidratos , Cromatografia Gasosa-Espectrometria de Massas , Alginatos/química , Celulose , Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
15.
Ultrason Sonochem ; 102: 106727, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113584

RESUMO

This study first employed ultrasonic-assisted fermentation of seaweed foot material with Lactiplantibacillus plantarum to produce Porphyra yezoensis sauce. The aim was to examine L. plantarum's growth and metabolism of nutritional components at different growth stages under low- (133.99 W/L) and high-ultrasonic power densities (169.17 W/L). After 24-h fermentation, L. plantarum exhibited a 21.32 % increase in the sonicated P. yezoensis sauce at 133.99 W/L and the logarithmic growth phase compared to that at 169.17 W/L. In addition, compared to the non-sonicated sauce, total phenolic and flavonoid contents increased by around 58 % and 27 % in sonicated sauce at 133.99 W/L, reaching 92.38 mg GEA/g DW and 111.08 mg RE/g DW, respectively. Principal Component Analysis (PCA) of the evaluation criteria for different fermentation stages under 133.99 W/L power ultrasonication revealed that the P. yezoensis sauce generated more phenolic compounds and exhibited stronger antioxidant capabilities in the sonicated sample at the logarithmic phase of L. plantarum. Compared to the traditional treated P. yezoensis sauce, the content of free amino acids was significantly increased in sonicated sauce, especially for logarithmic phase. Finally, GC-IMS analysis demonstrated that the ultrasonication at logarithmic phase released more volatile compounds compared to the non-sonicated sauce. This led to a reduction in the fishy odour of the Porphyra yezoensis sauce and an improved release of favourable flavour compounds.


Assuntos
60578 , Porphyra , Alga Marinha , Fermentação , Porphyra/química , Porphyra/metabolismo , Alimentos , Alga Marinha/química
16.
Food Chem ; 440: 138241, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141439

RESUMO

This study aimed to examine the composition and properties of the invasive macroalgae R. okamurae and explore potential applications. The results showed that the seaweed biomass is mainly composed of structural carbohydrates, with alginate being the main constituent, accounting for 32 % of its total composition and with a mannuronic and guluronic acid ratio (M/G) ratio of 0.93. It also has a relatively high concentration of fucose, related to the presence of fucoidans that have important biological functions. Among the mineral contents, a high magnesium and calcium (7107 and 5504 mg/kg) concentration, and the presence of heavy metals above legislated thresholds, were notable. R. okamurae also contained a high lipid content of 17 %, mainly composed of saturated fatty acids, but with a significant fraction of n3 polyunsaturated fatty acids (18 %) resulting in a low n6/n3 ratio (0.31), that has health benefits. The protein content of R. okamurae was 12 %, with high-quality proteins, as essential amino acids (mainly leucine, phenylalanine and valine) constitute 32 % of the total amino acids. It also showed a high polyphenol content and outstanding antioxidant properties (106.88 mg TE/g). Based on these findings, R. okamurae has significant potential as a sustainable source of bioactive compounds that can add value to different sectors, including food, feed, pharmaceuticals and cosmetics.


Assuntos
Feófitas , Alga Marinha , Alga Marinha/química , Biomassa , Ácidos Graxos/metabolismo , Proteínas/metabolismo
17.
J Proteomics ; 293: 105063, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38151157

RESUMO

The brown seaweed Laminaria digitata, a novel feedstuff for weaned piglets, has potentially beneficial prebiotic properties. However, its recalcitrant cell wall challenges digestion in monogastrics. Alginate lyase is a promising supplement to mitigate this issue. This study's aim was to investigate the impact of incorporating 10% dietary Laminaria digitata, supplemented with alginate lyase, on the hepatic proteome and metabolome of weaned piglets. These diets introduced minor variations to the metabolome and caused significant shifts in the proteome. Dietary seaweed provided a rich source of n-3 PUFAs that could signal hepatic fatty acid oxidation (FABP, ACADSB and ALDH1B1). This may have affected the oxidative stability of the tissue, requiring an elevated abundance of GST for regulation. The presence of reactive oxygen species likely inflicted protein damage, triggering increased proteolytic activity (LAPTM4B and PSMD4). Alginate lyase supplementation augmented the number of differentially abundant proteins, which included GBE1 and LDHC, contributing to maintain circulating glucose levels by mobilizing glycogen stores and branched-chain amino acids. The enzymatic supplementation with alginate lyase amplified the effects of the seaweed-only diet. An additional filter was employed to test the effect of missing values on the proteomics analysis, which is discussed from a technical perspective. SIGNIFICANCE: Brown seaweeds such as Laminaria digitata have prebiotic and immune-modulatory components, such as laminarin, that can improve weaned piglet health. However, they have recalcitrant cell wall polysaccharides, such as alginate, that can elicit antinutritional effects on the monogastric digestive system. The aim of this study was to evaluate the effect of a high level of dietary L. digitata and alginate lyase supplementation on the hepatic metabolism of weaned piglets, using high throughput Omics approaches.


Assuntos
60578 , Laminaria , Polissacarídeo-Liases , Proteoma , Alga Marinha , Animais , Suínos , Proteômica , Dieta , Suplementos Nutricionais , Alga Marinha/química , Fígado
18.
Ultrason Sonochem ; 101: 106710, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38043460

RESUMO

Fucoidan, a sulphated polysaccharide, is found exclusively in brown seaweeds and has been reported to possess a wide range of biological functionalities. Fucoidans are found within the cell wall of brown seaweeds, which is composed of recalcitrant cellulose and hemicellulose. This hampers the recovery of fucoidans. In addition, fucoidans are found within a network of viscous hydrocolloids, alginates, further complicating their recovery. Traditionally, the hot water extraction method is used to recover fucoidans from brown seaweed, however, this is characterized by low yields and long extraction time. To combat these issues, several novel extraction technologies have been introduced, these include ultrasound-assisted extraction and enzyme-assisted extraction. Thus, the main aim of this study was to investigate and optimize fucoidan recovery from Ecklonia maxima based on ultrasound-assisted enzymatic extraction. The impact of temperature (40-65 °C), ultrasound intensity (0-118 W·cm-2), enzyme dosage (0-0.05 ml·g-1) and pH (4.5-6) on total dissolved, total carbohydrates and inorganic sulphates yields was studied. The application of ultrasound-assisted enzymatic extraction mainly improved the extraction of total carbohydrates. Ultrasound significantly improves the kinetics and extraction of fucoidan, but there was no merit when it was applied with enzymes. Results reveal that at optimized conditions, the fucoidan extracted 79.13 mg⋅g-1 (7.9 % w/w) of algal dry weight. The present study provides insight into the extraction potentials of enzyme-assisted extraction, ultrasound-assisted extraction, and ultrasound-assisted enzymatic extraction.


Assuntos
Kelp , Alga Marinha , África do Sul , Polissacarídeos/química , Alga Marinha/química
19.
J Vis Exp ; (201)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38078616

RESUMO

The interest in seaweeds as an abundant feedstock to obtain valuable and multitarget bioactive ingredients is continuously growing. In this work, we explore the potential of Gracilaria gracilis, an edible red seaweed cultivated worldwide for its commercial interest as a source of agar and other ingredients for cosmetic, pharmacological, food, and feed applications. G. gracilis growth conditions were optimized through vegetative propagation and sporulation while manipulating the physicochemical conditions to achieve a large biomass stock. Green extraction methodologies with ethanol and water were performed over the seaweed biomass. The bioactive potential of extracts was assessed through a set of in vitro assays concerning their cytotoxicity, antioxidant, and antimicrobial properties. Additionally, dried seaweed biomass was incorporated into pasta formulations to increase food's nutritional value. Pigments extracted from G. gracilis have also been incorporated into yogurt as a natural colorant, and their stability was evaluated. Both products were submitted to the appreciation of a semi-trained sensorial panel aiming to achieve the best final formulation before reaching the market. Results support the versatility of G. gracilis whether it is applied as a whole biomass, extracts and/or pigments. Through implementing several optimized protocols, this work allows the development of products with the potential to profit the food, cosmetic, and aquaculture markets, promoting environmental sustainability and a blue circular economy. Moreover, and in line with a biorefinery approach, the residual seaweed biomass will be used as biostimulant for plant growth or converted to carbon materials to be used in water purification of the in-house aquaculture systems of MARE-Polytechnic of Leiria, Portugal.


Assuntos
Gracilaria , Alga Marinha , Alga Marinha/química , Gracilaria/química , Antioxidantes , Verduras , Ágar
20.
Mar Drugs ; 21(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38132939

RESUMO

This work deals with the formulation of natural cosmetics enriched with antioxidant fractions from the ultrasound treatment (US) of the brown seaweed Saccharina latissima. The challenge was the development of a cosmetic matrix without jeopardizing the thermorheological features of the creams, adding microparticles containing the antioxidant fractions using two different carriers, mannitol and alginate. The fundamental chemical characteristics of seaweed and the extracts obtained via sonication, as well as the antioxidant properties of the latter, were analyzed. The highest TEAC (Trolox equivalent antioxidant capacity) value was identified for the extracts subjected to the longest processing time using ultrasound-assisted extraction (240 min). A similar yield of microparticle formulation (around 60%) and load capacity (about 85%) were identified with mannitol and alginate as carriers. Color testing of the creams exhibited small total color differences. The rheological results indicated that the testing temperature, from 5 to 45 °C, notably influenced the apparent viscosity of the matrices. All creams were adequately fitted with the two parameters of the Ostwald-de Waele model, with the flow consistency index following an Arrhenius dependency with the testing temperature. Neither hysteresis nor water syneresis was observed in the proposed cosmetics during 6 months of cold storage at 4-6 °C.


Assuntos
Cosméticos , Alga Marinha , Antioxidantes/farmacologia , Alga Marinha/química , Alginatos , Verduras , Manitol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...